Математическая энциклопедия




Математическая энциклопедия
АВТОМАТОВ ГОМОМОРФИЗМ -
АВТОМАТОВ ГОМОМОРФИЗМ

отображение входного и выходного алфавитов, а также множества состояний одного автомата в аналогичные множества другого автомата, сохраняющее функции переходов и выходов. Более точно А. г. автомата в автомат (см. Автомат конечный) - это отображение множества в множество такое, что


и для любых s из S1 и аиз А 1 имеют место равенства:


Для автоматов инициальных, кроме того, требуется, чтобы функция hначальное состояние переводила в начальное. Автоматы наз. гомоморфными, если существует А. г. Л, отображающий на Если, кроме того, отображение hвзаимно однозначно, то hназ. изоморфизмом, а автоматы - изоморфными автоматами. Если алфавиты А 1 и А 2, а также В 1 и В 2 совпадают и отображения h1 и h3 тождественны, то гомоморфизм (изоморфизм) hназ. гомоморфизмом (изоморфизмом) по состояниям. Аналогично определяются гомоморфизмы (изоморфизмы) по входному и выходному алфавитам. Изоморфные по состояниям автоматы, а также гомоморфные по состояниям инициальные автоматы эквивалентны (см. Автоматов эквивалентность).

Понятие А. г. используется в связи с задачами минимизации, разложения, полноты автоматов и др.

Лит.:[1] Глушков В. М., "Успехи матем. наук", 1961, т. 16, в. 5, с. 3-62. Л. Л. Летичевский.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

АВТОМАТОВ АЛГЕБРАИЧЕСКАЯ ТЕОРИЯ АВТОМАТОВ АЛГЕБРАИЧЕСКАЯ ТЕОРИЯ направление в автоматов теории, характеризующееся использованием алгебраич. средств в изучении автоматов. А. а. т. основана на том, что автоматы можно рассматривать как нек-рые специальные алгебры или алгебраические системы. Кроме того, события, представимые
СЕМИОТИКА СЕМИОТИКА (от греч. semeiot — знак) — общая теория знаковых систем, изучающая свойства знаковых комплексов самой различной природы. К таким системам относятся естественные языки, письменные и устные, разнообразные искусственные языки, начиная с формализованных я
АЛГЕБРА АЛГЕБРА - часть математики, посвященная изучению алгебраических операций. Исторический очерк. Простейшие алгебраич. операции - арифметич. действия над натуральными и положительными рациональными числами - встречаются в самых ранних математич. текстах, свидетельствующих о том, что уже в гл
automata homomorphism automata homomorphism мат. гомоморфизм автоматов Большой англо-русский и русско-английский словарь. 2001.
ПРЕДСТАВЛЕНИЕ ПОЛУГРУППЫ ПРЕДСТАВЛЕНИЕ ПОЛУГРУППЫ S в классе полугрупп X - гомоморфизм полугруппы S в нек-рую полугруппу из класса X (в случае изоморфизма говорят о точном представлении). Обычно имеются в виду классы каких-либо конкретных полугрупп. Наиболее изучены представления в классе полугрупп преобразовани
МНОГОЗНАЧНЫЕ ЛОГИКИ МНОГОЗНАЧНЫЕ ЛОГИКИ     МНОГОЗНАЧНЫЕ ЛОГИКИ — обобщение классической двузначной логики (см. Логика высказываний) к примеру, посредством которого к обычным истинностным значениям “истина” и “ложь” добавляются и другие (промежуточные) значения. Этот факт указывает на то, что принцип двузначности
automata homomorphism automata homomorphism Математика: гомоморфизм автоматов Универсальный англо-русский словарь. Академик.ру. 2011.

Заказать работу



наверх страницынаверх страницы на верх страницы





© Библиотека учебной и научной литературы, 2012-2016 Рейтинг@Mail.ru Яндекс цитирования