Физическая энциклопедия




Физическая энциклопедия
АВТОЭЛЕКТРОННАЯ ЭМИССИЯ -
АВТОЭЛЕКТРОННАЯ ЭМИССИЯ
АВТОЭЛЕКТРОННАЯ ЭМИССИЯ

       
(туннельная эмиссия, полевая эмиссия), испускание эл-нов проводящими твёрдыми и жидкими телами под действием внеш. электрич. поля высокой напряжённости E(=107 В/см) у их поверхности. Механизм А. э.— туннельное прохождение эл-нов сквозь потенц. барьер на границе проводник — непроводящая среда (см. ТУННЕЛЬНЫЙ ЭФФЕКТ). Наиболее полно изучена А. э. металлов в вакуум. Плотность тока А. э. в этом случае определяется приближённой ф-лой:
АВТОЭЛЕКТРОННАЯ ЭМИССИЯ> </div> <div> к-рая хорошо описывает А. э. в интервале j от 10-5 до 107 А/см2. Здесь Ф=еj — <a href=работа выхода эмиттера (j — потенциал работы выхода, е — заряд эл-на). Характерные св-ва А. э.: высокие j (до 1010 А/см2) и экспоненциальная зависимость j от Е и Ф. При j>106 А/см2 могут наблюдаться отклонения зависимости lgj=f(1/E) от линейной, что связывают с влиянием объёмного заряда или же с особенностями формы потенц. барьера. При j=108—1010 А/см2 А. э. может перейти в вакуумный пробой с разрушением эмиттера. Этот переход сопровождается интенсивной, т. н. взрывной электронной эмиссией. А. э. слабо зависит от темп-ры Т, малые отклонения от зависимости (*) с ростом Т пропорц. T2, С дальнейшим ростом Т и понижением Е т. н. термоавтоэлектронная эмиссия переходит в термоэлектронную эмиссию, усиленную полем за счёт Шоттки эффекта.
Энергетпч. спектр эл-нов, вылетающих из металла в случае А. э., весьма узок (полуширина =0,1 эВ). Форма спектра чувствительна к распределению эл-нов по энергиям внутри эмиттера, а также к наличию примесей на его поверхности. Для А. э. полупроводников характерны внутр. ограничения j, связанные с меньшей концентрацией эл-нов, дополнит. влияние поля на j из-за проникновения поля в ПП, а также термо- и фоточувствительность ПП, влияющая на j.
Автоэмиттеры (холодные катоды) имеют большую кривизну поверхности (острия, лезвия, выступы и т. п.). Анод, совмещённый с люминесцирующим экраном, превращает одноострийный автоэмиссионный диод в эмиссионный безлинзовый электронный микроскоп (проектор).

Физический энциклопедический словарь. — М.: Советская энциклопедия. . 1983.

АВТОЭЛЕКТРОННАЯ ЭМИССИЯ

(полевая эмиссия, электростатическая эмиссия, туннельная эмиссия) - испускание электронов проводящими твёрдыми и жидкими телами под действием внеш. электрич. поля Е достаточно высокой напряжённости ( Е~ 10 В/см). А. э. обнаружена в 1897 Р. У. Вудом. В 1929 Р. Э. Милликен и Ч. К. Лоритсен установили линейную зависимость логарифма плотности тока j А. э. от 1/E вида 111992-26.jpg ( А и В - константы). В 1928-29 Р. Фаулер и Л Нордхейм дали теоретич. объяснение А. э. на основе туннельного эффекта. Термин "А. э." отражает отсутствие энергетич. затрат на возбуждение электронов, свойственных др. видам электронной эмиссии (в зарубежной лит-ре чаще употребляется термин "полевая эмиссия").

При А. э. электроны преодолевают потенц. барьер на границе эмиттера, не проходя над ним за счёт ки-нетич. энергии теплового движения, как при термоэлектронной эмиссии, а путём туннельного просачивания сквозь барьер, сниженный и суженный электрич. полем. Электронная волна (см. Волны де Бройля), встречая на пути потенц. барьер, частично отражается и частично проходит сквозь него (рис. 1). По мере увеличения внешнего ускоряющего поля понижается высота потенц. барьера над уровнем Ферми 111992-27.jpg. Од-новрем. уменьшается ширина барьера.

111992-28.jpg

Рис. 1. Потенциальная энергия электрона вблизи поверхности металла 111992-29.jpg- в отсутствие электрического поля. 111992-30.jpg- обусловленная слабым внешним электрическим полем; 111992-31.jpg- более сильным полем; 111992-32.jpg - энергия, соответствующая отсутствию сил изображения в случае сильного поля; 111992-33.jpg - энергия Ферми; х 12- ширина потенциального барьера при наличии внешнего поля,111992-34.jpg -работа выхода.

В результате увеличивается число электронов, просачивающихся в единицу времени сквозь барьер, соответственно увеличивается т. н. прозрачность барьера D (отношение числа электронов, прошедших сквозь барьер, к полному числу электронов, падающих на барьер) и соотв. плотность тока А. э.

Теоретич. расчёт плотности тока j А. э. приводит к ф-ле

111992-35.jpg ,

где е - заряд электрона; - концентрация электронов проводимости в проводнике с энергией 111992-36.jpg, связанной с компонентой импульса, нормальной к поверхности; Е - напряжённость электрич. поля у поверхности эмиттера. Из (1) следует зависимость j от концентрации электронов в проводнике и их энергетич. распределения 111992-37.jpg , а также от высоты и формы барьера, к-рые определяют его прозрачность D.

А. э. из металлов в вакуум изучена наиб. полно. В этом случае j следует т. н. закону Фаулера - Норд-хейма:

111992-38.jpg(2),

где 111992-39.jpg.

Здесь т - масса электрона, 111992-40.jpg -потенциал работы выхода 111992-41.jpg металла, t и 111992-42.jpg -табулированные ф-ции аргумента 111992-43.jpg, 111992-44.jpg, 111992-45.jpg. Подставив значения констант я положив t2 (у) = 1,1, а 111992-46.jpg111992-47.jpg, получим из (2) приближенную ф-лу

111992-48.jpg (3)

(j, Е и 111992-49.jpg. в А/см 2, В/см и эВ, см. табл.). Ф-ла (2) получена в след. предположениях: свободные электроны в металле подчиняются статистике Ферми - Дирака; вне металла на электрон действуют только силы зеркального изображения.

Значения 111992-50.jpg для некоторых Е и 111992-51.jpg, рассчитанные по формуле (2)

111992-52.jpg = 2,0

111992-53.jpg = 4,5

111992-54.jpg = 6,3

111992-55.jpg

111992-56.jpg

111992-57.jpg

111992-58.jpg

111992-59.jpg

111992-60.jpg

1,0

2,98

2,0

-3,33

2,0

- 12,90

1,2

4,45

3,0

1,57

4,0

-0,88

1,4

5, 49

4,0

4,06

6,0

3,25

1,6

6,27

5,0

5,59

8,0

5,34

1,8

6,89

6,0

6,62

10,0

6,66

2,0

7,40

7,0

7,36

12,0

7,52

2,2

7,82

8,0

7,94

14,0

8,16

2,4

8, 16

9,0

8,39

16,0

8,65

2,6

8,45

10 ,0

8,76

18,0

9,04



12,0

9,32

20,0

9,36

Прозрачность барьера D (111992-61.jpg, Е )рассчитывалась в квазиклассическом приближении.

Несмотря на упрощения, ф-ла Фаулера - Нордхейма хорошо согласуется с экспериментом. Характерными свойствами А. э. из металлов являются высокие предельные плотности тока j (вплоть до 1010 А/см 2) и экспоненц. зависимость j от 111992-62.jpg и Е. При j=106- 10' А/см 2 наблюдается нек-рое уменьшение j по сравнению с (2). Это связано с влиянием объёмного заряда или с деталями формы потенц. барьера. Рост тока j с повышением напряжения V заканчивается при j= 108-1010 А/см 2 вакуумным пробоем и гибелью эмиттера. Этому предшествует более интенсивная, но кратковременная взрывная электронная эмиссия.

А. э. слабо зависит от темп-ры Т. Малые отклонения j от (2) с ростом Т прямо пропорц. Т 2:

111992-63.jpg (4)

Ф-ла (4) верна с точностью ~ 1% для приращений тока ~ 18%. Для отношения 111992-64.jpg справедлива т. н. ф-ла Мёрфи и Гуда

111992-65.jpg111992-66.jpg(5).

Для больших изменений j(Т )существуют более громоздкие ф-лы и графики, полученные численными расчётами.

111992-67.jpg

Рис. 2. Энергетический спектр автоэлектронов при разных температурах Т и внешних полях Е для Ф = 4,5 эВ; - уровень покоящегося электрона в вакууме.111992-68.jpg

При повышении Т и снижении Е А. э. (термоавтоэлектронная эмиссия) переходит в термоэлектронную эмиссию, усиленную полем ( Шоттки аффект). Энергетич. спектр автоэлектронов из металла узок (рис. 2). Полуширина а распределения по полным нергиям при Т=0К определяется ф-лой

111992-69.jpg (6)

При 111992-70.jpg=4,4 эВ и lg j от 0 до 7111992-71.jpg варьируется от 0,08 до 0,2 эВ. Величина 111992-72.jpg с повышением Т возрастает, в частности при 300 К (в том же диапазоне j) 111992-73.jpg изменяется от 0,17 до 0,3 эВ. Форма спектра отклоняется от теоретической (в модели свободных электронов) при сложной конфигурации ферми-поверхности или при наличии адсорбир. молекул и атомов на поверхности, особенно если они неметаллич. происхождения (напр., нек-рых органич. молекул, к-рые играют роль волноводов для электронных волн).

Отбор тока при низких темп-pax приводит к нагреванию эмиттера, т. к. уходящие электроны уносят энергию в ср. меньшую, чем энергия Ферми 111992-74.jpg, тогда как вновь поступающие в металл через контакт электроны имеют энергию 111992-75.jpg (Ноттингема эффект). С возрастанием Т нагрев сменяется охлаждением - эффект меняет знак, проходя через т. н. темп-ру инверсии, соответствующую симметричному относительно уровня Ферми распределению вышедших электронов по полным энергиям. При больших Т, когда эмиттер разогревается за счёт джоулевых потерь, инверсия эффекта Ноттингема в нек-рых пределах препятствует лавинному саморазогреву и стабилизирует А. э.

А. э. из полупроводников. Особенности А. э. из полупроводников связаны с неск. факторами: 1) элект-рич. поле глубоко проникает в полупроводник, что приводит к смещению энергетич. зон, к изменению вблизи поверхности концентрации носителей заряда и их энергетич. спектра; 2) концентрация электронов во много раз меньше, чем в металле, что ограничивает величину j, и она сильно зависит от внеш. воздействий (темп-pa, освещение и др.); 3) поверхностные состояния носителей заряда могут сказываться на характеристиках А. э.; 4) вольт-амперные характеристики и энергетич. спектры автоэлектронов отражают зонную структуру полупроводников; 5) протекающий через полупроводник ток может приводить к перераспределению потенциала на нём, а также влиять на энергетич. спектр электронов. Все эти особенности привлекаются для объяснения наблюдаемых вольт-амперных характеристик и энергетич. спектров автоэлектронов из полупроводников.

Автоэлектронные эмиттеры (катоды) делают в виде поверхностей с большой кривизной: острия, лезвия, шероховатые края фольг и плёнок, торцы нитей и т. п. Для отбора относительно больших токов используют многоострийные системы, многоэмиттерные системы на краях плёнок и фольг и т. п. В зависимости от размеров эмиттеров и расстояния до анода напряжение V, обеспечивающее величину электрич. поля Б, достаточную для возникновения А. э., может составлять от сотен В до неск. десятков кВ.

Стабильность А. э. связана с постоянством распределения 111992-76.jpg вдоль катода и т. <н полевого множителя 111992-77.jpg Оба эти фактора могут изменяться под влиянием адсорбции и миграции атомов или молекул как примесей, так и материала эмиттера. Напр., локальные значения 111992-78.jpg возрастают в результате миграции поверхностных атомов под действием сильного электрич. поля (перестройка в поле) или в результате "изъязвления" поверхности при ионной бомбардировке. Повышение стабильности А. э. достигается улучшением вакуума, очисткой эмиттера, использованием импульсного напряжения (для ослабления миграции атомов в электрич. поле и саморазогрева эмиттера), умеренным подогревом эмиттера (для защиты от адсорбции и для "заглаживания" дефектов в местах удара ионов), применением слабо адсорбирующих материалов (нек-рые карбиды, бориды, нитриды металлов, углерод). Исследование А. э. из монокристаллов тугоплавких металлов, а также хим. соединений с металлич. проводимостью (111992-79.jpg и др.) в сверхвысоком вакууме (поверхность эмиттера остаётся чистой в течение часов или суток) позволило уточнить параметры А. э. для этих веществ.

Применение. Металлич. автоэлектронные эмиттеры используются в тех случаях, когда требуется высокая плотность тока j, т. е. там, где необходимы большие токи либо концентрир. электронные пучки. Преимуществами автоэлектронных эмиттеров являются отсутствие энергетич. затрат на подогрев и безынерци-онность. Металлич. автоэлектронные эмиттеры (обычно многоострийные) применяются в мощных сильноточных устройствах. Нелинейность вольт-амперной характеристики используется в устройствах СВЧ (преобразователи частоты, усилители, детекторы сигналов). Автоэмиссионный эмиттер в качестве интенсивного точечного источника электронов применяется в растровых микроскопах. Он перспективен в рентгеновской и обычной электронной микроскопии, в рентгеновской дефектоскопии, в рентгеновских микроанализаторах и электронно-лучевых приборах. Автоэмиссионные эмиттеры могут также употребляться в микроэлектронных устройствах и в чувствит. индикаторах изменения напряжения.

Автоэлектронный катод в сочетании с анодом, совмещённым с люминесцирующим экраном, превращает такой автоэмиссионный диод в эмиссионный электронный микроскоп. На его экране можно наблюдать картину углового распределения тока А. э. с острия при высоких увеличениях и разрешающей способности (см. Электронный проектор).

Полупроводниковые автоэмиссионные эмиттеры перспективны как чувствит. приёмники ИК-излучения. Многоострийные системы эмиттеров служат основой для мозаичных систем в преобразователях ИК-изоб-ражений.

В высоковольтных вакуумных устройствах А. э. может играть и "вредную роль", способствуя утечкам тока, развитию вакуумного пробоя. Для подавления А. э. в этих случаях снижают поле у поверхности электродов (уменьшая их кривизну), подбирают расположение электродов и распределение потенциалов, а также повышают работу выхода из поверхности (подбором материала или покрытия).

Лит.: Елинсон М. И., Васильев Г. Ф., Автоэлектронная эмиссия, М., 1958: Фишер Р., Нойман X., Автоэлектронная эмиссия полупроводников, пер. с нем., М., 1971; Ненакаливаемые катоды, М., 1974; Wood R. W., A new form of cathode discharge and the production ox X-rays, together with some notes of diffraction, "Phys. Rev.", 1897, v. 5, № 1, p. 1. Mi11ikan Л. A., Lauritsen С. С., Temperature dependence of field currents, там же, 1929, v. 33, Mi 4, p. 598: Fowler R. H., Nоrdheim L., Electron emission in intense electric fields, "Proc. Roy. Soc.", 1928, ser. A, v. 119, № 781, p. 173; Gооd R. H., Mu11er E. W., Field emission. in: Handbuch der Physik, Bd 21, В.- Guttingen - Heidelberg, 1956. В. Н. Шредник.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. . 1988.


.

АВТОЭЛЕКТРОННАЯ ЭМИССИЯ АВТОЭЛЕКТРОННАЯ ЭМИССИЯ (туннельная эмиссия, полевая эмиссия), испускание электронов поверхностью тв. тел и жидкостей под действием сильного электрич. поля; обусловлена туннельным эффектом. Автоэлектронный эмиттер (катод) используют в растровых электронных микроскопах в качестве интенсивного точе
,
АВТОЭЛЕКТРОННАЯ ЭМИССИЯ

       
(туннельная эмиссия, полевая эмиссия), испускание эл-нов проводящими твёрдыми и жидкими телами под действием внеш. электрич. поля высокой напряжённости E(=107 В/см) у их поверхности. Механизм А. э.— туннельное прохождение эл-нов сквозь потенц. барьер на границе проводник — непроводящая среда (см. ТУННЕЛЬНЫЙ ЭФФЕКТ). Наиболее полно изучена А. э. металлов в вакуум. Плотность тока А. э. в этом случае определяется приближённой ф-лой:
АВТОЭЛЕКТРОННАЯ ЭМИССИЯ> </div> <div> к-рая хорошо описывает А. э. в интервале j от 10-5 до 107 А/см2. Здесь Ф=еj — <a href=работа выхода эмиттера (j — потенциал работы выхода, е — заряд эл-на). Характерные св-ва А. э.: высокие j (до 1010 А/см2) и экспоненциальная зависимость j от Е и Ф. При j>106 А/см2 могут наблюдаться отклонения зависимости lgj=f(1/E) от линейной, что связывают с влиянием объёмного заряда или же с особенностями формы потенц. барьера. При j=108—1010 А/см2 А. э. может перейти в вакуумный пробой с разрушением эмиттера. Этот переход сопровождается интенсивной, т. н. взрывной электронной эмиссией. А. э. слабо зависит от темп-ры Т, малые отклонения от зависимости (*) с ростом Т пропорц. T2, С дальнейшим ростом Т и понижением Е т. н. термоавтоэлектронная эмиссия переходит в термоэлектронную эмиссию, усиленную полем за счёт Шоттки эффекта.
Энергетпч. спектр эл-нов, вылетающих из металла в случае А. э., весьма узок (полуширина =0,1 эВ). Форма спектра чувствительна к распределению эл-нов по энергиям внутри эмиттера, а также к наличию примесей на его поверхности. Для А. э. полупроводников характерны внутр. ограничения j, связанные с меньшей концентрацией эл-нов, дополнит. влияние поля на j из-за проникновения поля в ПП, а также термо- и фоточувствительность ПП, влияющая на j.
Автоэмиттеры (холодные катоды) имеют большую кривизну поверхности (острия, лезвия, выступы и т. п.). Анод, совмещённый с люминесцирующим экраном, превращает одноострийный автоэмиссионный диод в эмиссионный безлинзовый электронный микроскоп (проектор).

Физический энциклопедический словарь. — М.: Советская энциклопедия. . 1983.

АВТОЭЛЕКТРОННАЯ ЭМИССИЯ АВТОЭЛЕКТРОННАЯ ЭМИССИЯ (туннельная эмиссия, полевая эмиссия), испускание электронов поверхностью тв. тел и жидкостей под действием сильного электрич. поля; обусловлена туннельным эффектом. Автоэлектронный эмиттер (катод) используют в растровых электронных микроскопах в качестве интенсивного точе
,
АВТОЭЛЕКТРОННАЯ ЭМИССИЯ

(полевая эмиссия, электростатическая эмиссия, туннельная эмиссия) - испускание электронов проводящими твёрдыми и жидкими телами под действием внеш. электрич. поля Е достаточно высокой напряжённости ( Е~ 10 В/см). А. э. обнаружена в 1897 Р. У. Вудом. В 1929 Р. Э. Милликен и Ч. К. Лоритсен установили линейную зависимость логарифма плотности тока j А. э. от 1/E вида 111992-26.jpg ( А и В - константы). В 1928-29 Р. Фаулер и Л Нордхейм дали теоретич. объяснение А. э. на основе туннельного эффекта. Термин "А. э." отражает отсутствие энергетич. затрат на возбуждение электронов, свойственных др. видам электронной эмиссии (в зарубежной лит-ре чаще употребляется термин "полевая эмиссия").

При А. э. электроны преодолевают потенц. барьер на границе эмиттера, не проходя над ним за счёт ки-нетич. энергии теплового движения, как при термоэлектронной эмиссии, а путём туннельного просачивания сквозь барьер, сниженный и суженный электрич. полем. Электронная волна (см. Волны де Бройля), встречая на пути потенц. барьер, частично отражается и частично проходит сквозь него (рис. 1). По мере увеличения внешнего ускоряющего поля понижается высота потенц. барьера над уровнем Ферми 111992-27.jpg. Од-новрем. уменьшается ширина барьера.

111992-28.jpg

Рис. 1. Потенциальная энергия электрона вблизи поверхности металла 111992-29.jpg- в отсутствие электрического поля. 111992-30.jpg- обусловленная слабым внешним электрическим полем; 111992-31.jpg- более сильным полем; 111992-32.jpg - энергия, соответствующая отсутствию сил изображения в случае сильного поля; 111992-33.jpg - энергия Ферми; х 12- ширина потенциального барьера при наличии внешнего поля,111992-34.jpg -работа выхода.

В результате увеличивается число электронов, просачивающихся в единицу времени сквозь барьер, соответственно увеличивается т. н. прозрачность барьера D (отношение числа электронов, прошедших сквозь барьер, к полному числу электронов, падающих на барьер) и соотв. плотность тока А. э.

Теоретич. расчёт плотности тока j А. э. приводит к ф-ле

111992-35.jpg ,

где е - заряд электрона; - концентрация электронов проводимости в проводнике с энергией 111992-36.jpg, связанной с компонентой импульса, нормальной к поверхности; Е - напряжённость электрич. поля у поверхности эмиттера. Из (1) следует зависимость j от концентрации электронов в проводнике и их энергетич. распределения 111992-37.jpg , а также от высоты и формы барьера, к-рые определяют его прозрачность D.

А. э. из металлов в вакуум изучена наиб. полно. В этом случае j следует т. н. закону Фаулера - Норд-хейма:

111992-38.jpg(2),

где 111992-39.jpg.

Здесь т - масса электрона, 111992-40.jpg -потенциал работы выхода 111992-41.jpg металла, t и 111992-42.jpg -табулированные ф-ции аргумента 111992-43.jpg, 111992-44.jpg, 111992-45.jpg. Подставив значения констант я положив t2 (у) = 1,1, а 111992-46.jpg111992-47.jpg, получим из (2) приближенную ф-лу

111992-48.jpg (3)

(j, Е и 111992-49.jpg. в А/см 2, В/см и эВ, см. табл.). Ф-ла (2) получена в след. предположениях: свободные электроны в металле подчиняются статистике Ферми - Дирака; вне металла на электрон действуют только силы зеркального изображения.

Значения 111992-50.jpg для некоторых Е и 111992-51.jpg, рассчитанные по формуле (2)

111992-52.jpg = 2,0

111992-53.jpg = 4,5

111992-54.jpg = 6,3

111992-55.jpg

111992-56.jpg

111992-57.jpg

111992-58.jpg

111992-59.jpg

111992-60.jpg

1,0

2,98

2,0

-3,33

2,0

- 12,90

1,2

4,45

3,0

1,57

4,0

-0,88

1,4

5, 49

4,0

4,06

6,0

3,25

1,6

6,27

5,0

5,59

8,0

5,34

1,8

6,89

6,0

6,62

10,0

6,66

2,0

7,40

7,0

7,36

12,0

7,52

2,2

7,82

8,0

7,94

14,0

8,16

2,4

8, 16

9,0

8,39

16,0

8,65

2,6

8,45

10 ,0

8,76

18,0

9,04



12,0

9,32

20,0

9,36

Прозрачность барьера D (111992-61.jpg, Е )рассчитывалась в квазиклассическом приближении.

Несмотря на упрощения, ф-ла Фаулера - Нордхейма хорошо согласуется с экспериментом. Характерными свойствами А. э. из металлов являются высокие предельные плотности тока j (вплоть до 1010 А/см 2) и экспоненц. зависимость j от 111992-62.jpg и Е. При j=106- 10' А/см 2 наблюдается нек-рое уменьшение j по сравнению с (2). Это связано с влиянием объёмного заряда или с деталями формы потенц. барьера. Рост тока j с повышением напряжения V заканчивается при j= 108-1010 А/см 2 вакуумным пробоем и гибелью эмиттера. Этому предшествует более интенсивная, но кратковременная взрывная электронная эмиссия.

А. э. слабо зависит от темп-ры Т. Малые отклонения j от (2) с ростом Т прямо пропорц. Т 2:

111992-63.jpg (4)

Ф-ла (4) верна с точностью ~ 1% для приращений тока ~ 18%. Для отношения 111992-64.jpg справедлива т. н. ф-ла Мёрфи и Гуда

111992-65.jpg111992-66.jpg(5).

Для больших изменений j(Т )существуют более громоздкие ф-лы и графики, полученные численными расчётами.

111992-67.jpg

Рис. 2. Энергетический спектр автоэлектронов при разных температурах Т и внешних полях Е для Ф = 4,5 эВ; - уровень покоящегося электрона в вакууме.111992-68.jpg

При повышении Т и снижении Е А. э. (термоавтоэлектронная эмиссия) переходит в термоэлектронную эмиссию, усиленную полем ( Шоттки аффект). Энергетич. спектр автоэлектронов из металла узок (рис. 2). Полуширина а распределения по полным нергиям при Т=0К определяется ф-лой

111992-69.jpg (6)

При 111992-70.jpg=4,4 эВ и lg j от 0 до 7111992-71.jpg варьируется от 0,08 до 0,2 эВ. Величина 111992-72.jpg с повышением Т возрастает, в частности при 300 К (в том же диапазоне j) 111992-73.jpg изменяется от 0,17 до 0,3 эВ. Форма спектра отклоняется от теоретической (в модели свободных электронов) при сложной конфигурации ферми-поверхности или при наличии адсорбир. молекул и атомов на поверхности, особенно если они неметаллич. происхождения (напр., нек-рых органич. молекул, к-рые играют роль волноводов для электронных волн).

Отбор тока при низких темп-pax приводит к нагреванию эмиттера, т. к. уходящие электроны уносят энергию в ср. меньшую, чем энергия Ферми 111992-74.jpg, тогда как вновь поступающие в металл через контакт электроны имеют энергию 111992-75.jpg (Ноттингема эффект). С возрастанием Т нагрев сменяется охлаждением - эффект меняет знак, проходя через т. н. темп-ру инверсии, соответствующую симметричному относительно уровня Ферми распределению вышедших электронов по полным энергиям. При больших Т, когда эмиттер разогревается за счёт джоулевых потерь, инверсия эффекта Ноттингема в нек-рых пределах препятствует лавинному саморазогреву и стабилизирует А. э.

А. э. из полупроводников. Особенности А. э. из полупроводников связаны с неск. факторами: 1) элект-рич. поле глубоко проникает в полупроводник, что приводит к смещению энергетич. зон, к изменению вблизи поверхности концентрации носителей заряда и их энергетич. спектра; 2) концентрация электронов во много раз меньше, чем в металле, что ограничивает величину j, и она сильно зависит от внеш. воздействий (темп-pa, освещение и др.); 3) поверхностные состояния носителей заряда могут сказываться на характеристиках А. э.; 4) вольт-амперные характеристики и энергетич. спектры автоэлектронов отражают зонную структуру полупроводников; 5) протекающий через полупроводник ток может приводить к перераспределению потенциала на нём, а также влиять на энергетич. спектр электронов. Все эти особенности привлекаются для объяснения наблюдаемых вольт-амперных характеристик и энергетич. спектров автоэлектронов из полупроводников.

Автоэлектронные эмиттеры (катоды) делают в виде поверхностей с большой кривизной: острия, лезвия, шероховатые края фольг и плёнок, торцы нитей и т. п. Для отбора относительно больших токов используют многоострийные системы, многоэмиттерные системы на краях плёнок и фольг и т. п. В зависимости от размеров эмиттеров и расстояния до анода напряжение V, обеспечивающее величину электрич. поля Б, достаточную для возникновения А. э., может составлять от сотен В до неск. десятков кВ.

Стабильность А. э. связана с постоянством распределения 111992-76.jpg вдоль катода и т. <н полевого множителя 111992-77.jpg Оба эти фактора могут изменяться под влиянием адсорбции и миграции атомов или молекул как примесей, так и материала эмиттера. Напр., локальные значения 111992-78.jpg возрастают в результате миграции поверхностных атомов под действием сильного электрич. поля (перестройка в поле) или в результате "изъязвления" поверхности при ионной бомбардировке. Повышение стабильности А. э. достигается улучшением вакуума, очисткой эмиттера, использованием импульсного напряжения (для ослабления миграции атомов в электрич. поле и саморазогрева эмиттера), умеренным подогревом эмиттера (для защиты от адсорбции и для "заглаживания" дефектов в местах удара ионов), применением слабо адсорбирующих материалов (нек-рые карбиды, бориды, нитриды металлов, углерод). Исследование А. э. из монокристаллов тугоплавких металлов, а также хим. соединений с металлич. проводимостью (111992-79.jpg и др.) в сверхвысоком вакууме (поверхность эмиттера остаётся чистой в течение часов или суток) позволило уточнить параметры А. э. для этих веществ.

Применение. Металлич. автоэлектронные эмиттеры используются в тех случаях, когда требуется высокая плотность тока j, т. е. там, где необходимы большие токи либо концентрир. электронные пучки. Преимуществами автоэлектронных эмиттеров являются отсутствие энергетич. затрат на подогрев и безынерци-онность. Металлич. автоэлектронные эмиттеры (обычно многоострийные) применяются в мощных сильноточных устройствах. Нелинейность вольт-амперной характеристики используется в устройствах СВЧ (преобразователи частоты, усилители, детекторы сигналов). Автоэмиссионный эмиттер в качестве интенсивного точечного источника электронов применяется в растровых микроскопах. Он перспективен в рентгеновской и обычной электронной микроскопии, в рентгеновской дефектоскопии, в рентгеновских микроанализаторах и электронно-лучевых приборах. Автоэмиссионные эмиттеры могут также употребляться в микроэлектронных устройствах и в чувствит. индикаторах изменения напряжения.

Автоэлектронный катод в сочетании с анодом, совмещённым с люминесцирующим экраном, превращает такой автоэмиссионный диод в эмиссионный электронный микроскоп. На его экране можно наблюдать картину углового распределения тока А. э. с острия при высоких увеличениях и разрешающей способности (см. Электронный проектор).

Полупроводниковые автоэмиссионные эмиттеры перспективны как чувствит. приёмники ИК-излучения. Многоострийные системы эмиттеров служат основой для мозаичных систем в преобразователях ИК-изоб-ражений.

В высоковольтных вакуумных устройствах А. э. может играть и "вредную роль", способствуя утечкам тока, развитию вакуумного пробоя. Для подавления А. э. в этих случаях снижают поле у поверхности электродов (уменьшая их кривизну), подбирают расположение электродов и распределение потенциалов, а также повышают работу выхода из поверхности (подбором материала или покрытия).

Лит.: Елинсон М. И., Васильев Г. Ф., Автоэлектронная эмиссия, М., 1958: Фишер Р., Нойман X., Автоэлектронная эмиссия полупроводников, пер. с нем., М., 1971; Ненакаливаемые катоды, М., 1974; Wood R. W., A new form of cathode discharge and the production ox X-rays, together with some notes of diffraction, "Phys. Rev.", 1897, v. 5, № 1, p. 1. Mi11ikan Л. A., Lauritsen С. С., Temperature dependence of field currents, там же, 1929, v. 33, Mi 4, p. 598: Fowler R. H., Nоrdheim L., Electron emission in intense electric fields, "Proc. Roy. Soc.", 1928, ser. A, v. 119, № 781, p. 173; Gооd R. H., Mu11er E. W., Field emission. in: Handbuch der Physik, Bd 21, В.- Guttingen - Heidelberg, 1956. В. Н. Шредник.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. . 1988.

АВТОЭЛЕКТРОННАЯ ЭМИССИЯ АВТОЭЛЕКТРОННАЯ ЭМИССИЯ (туннельная эмиссия, полевая эмиссия), испускание электронов поверхностью тв. тел и жидкостей под действием сильного электрич. поля; обусловлена туннельным эффектом. Автоэлектронный эмиттер (катод) используют в растровых электронных микроскопах в качестве интенсивного точе

Заказать работу



наверх страницынаверх страницы на верх страницы





© Библиотека учебной и научной литературы, 2012-2016 Рейтинг@Mail.ru Яндекс цитирования